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SUMMARY 

The Tat protein of equine infectious anemia virus (EIAV) was synthesized in Escherichia coli using the inducible 
expression plasmid, pET16b, which contains a His.Tag leader, thus allowing for rapid and efficient enrichment of the 
histidine-tagged protein by metal affinity chromatography. Yields of up to 20 mg of Tat were obtained from 10” bacterial 
cells. The recombinant Tat protein was shown to potently trans-activate the EIAV long terminal repeat (LTR) following 
its introduction into canine cells by ‘scrape loading’. The EIAV Tat protein was found to localize predominantly within 
the cytoplasm, in contrast to HIV-l Tat. The availability of large amounts of purified functional EIAV Tat protein 
should greatly facilitate detailed structure-function analyses. 

INTRODUCTION 

Equine infectious anemia virus (EIAV), a lentivirus, 
is the etiologic agent of a chronic relapsing infectious 
disease in horses, characterized by symptoms of fever, 
anemia, glomerulonephritis and uremia (Montelaro et al., 
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1992). The EIAV genome contains three major ORFs, 
gag, pal and env, which encode the major viral structural 
proteins, as well as three additional short ORFs, desig- 
nated Sl, S2 and S3, encode Tat (Dorn et al., 1990; 
Noiman et al., 1990) and Rev (Rosin-Arbesfeld et al., 
1993; Stephens et al., 1990), respectively, but the S2 pro- 
duct has yet to be identified. The Tat protein was shown 
to activate in tram the viral long terminal repeat (LTR) 
(Sherman et al., 1988; Dorn et al., 1990; Stephens et al., 
1990). This activity was dependent on the presence of the 
Tat-responsive domain (TAR) located immediately down- 
stream from the cap site in the viral LTR (Sherman et al., 
1988; 1989; Dorn and Derse, 1988; Carvallo and Derse, 
1991), which can form a stem-loop structure (Hoffman 
et al., 1993). Such a structure was first identified in human 
lentiviral LTRs (reviewed in Cullen, 1992). In addition, 
sequences within the U3 were also found essential for 
EIAV Tat activity (Sherman et al., 1989). The Tat protein 
of EIAV shows significant sequence similarity to the Tat 
proteins of other primate lentiviruses (Noiman et al., 



1990; Carroll et al., 1991). However, in contrast to pri- 
mate Tat proteins (Kuppuswamy et al., 1989), EIAV Tat 
contains only three functional domains: the conserved 
core region, the basic region and the C-terminal region; 
thus, it lacks most of the Cys-rich domain and its N 
terminus is dispensable for trans-activation (Noiman 
et al., 1991; Carroll et al., 1991). Since vanishingly small 
amounts of Tat are present in infected cells, structure- 
function studies would be greatly facilitated by the pro- 
duction of biologically active Tat protein in bacteria. 
Although functional recombinant HIV Tat proteins have 
been described (Gentz et al., 1989; Slice et al., 1992; 
Graeble et al., 1993), the presence of the Cys-rich region 
has hampered efficient purification (Frankel et al., 1988). 
The present report describes the efficient production of a 
recombinant EIAV Tat protein in E. coli. This protein 
was shown to be functionally active when introduced into 
eukaryotic cells and to localize predominantly in the 
cytoplasm. The large quantity of pure recombinant, func- 
tionally active, Tat protein of EIAV will enable future 
structure-function studies. 

EXPERIMENTAL AND DISCUSSION 

(a) Expression of bacterially synthesized EIAV Tat 

protein 

The PET system (Novagen), which utilizes the strong 
T7 transcription and translation signals, was employed 
(Studier et al., 1990). The 5’ leader sequence of the PET 
vector used in this study encodes a stretch of several His 
residues, which is followed by a protease cleavage site. 
Thus, this system enables affinity chromatography puri- 
fication and protease-release of the Tat protein. 

The 8-kDa Tat protein is encoded by at least three 
alternatively spliced transcripts (Noiman et al., 1990; 
1991; Dorn et al., 1990; Stephens et al., 1990; Schiltz et al., 
1992). Although the synthesis of Tat was shown to initiate 
at a non-AUG start codon residing within the first exon 
of tat transcripts (Dorn et al., 1990; Stephens et al., 1990; 
Noiman et al., 1991; Carroll and Derse, 1993), the coding 
region required for activity was localized to residues 38 
to 83 of the tat ORF which are encoded by the second 
exon of the tat transcripts (Noiman et al., 1991; Derse 
et al., 1991). In order to express the EIAV Tat protein in 
PET bacterial expression vector, the tat coding region 
(Fig. 1) was amplified by PCR and the PCR product was 
inserted in-frame downstream from the Tag leader 
sequence in pET16b (Novagen), thus resulting in a plas- 
mid designated PET/TAT(S) which would express a fused 
His-Tat protein. As a negative control, the tat ORF was 
inserted in the opposite orientation, resulting in a con- 
struct designated pET/TAT(as). Following transforma- 
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Fig. 1. Schematic presentation of the His-Tat fusion protein. The E. di 

Tat expression plasmid PET/TAT(S) and the negative control PET, 

TAT(as), were constructed employing PCR (30 cycles at 94 C for 1 min. 

annealing at 6O’C for 1 min and polymerization at 72°C for 1 min). To 

amplify the Tat coding sequence, 10 ng of the tclt cDNA ~105 (Noiman 

et al., 1991) were used as a template. The oligodeoxynucleotides 

T-GGCCGTCGACGGATCCCCGGGACAGCAGAGGAGAACTTA 

and 5’-GGCCGTCGACGGATCCTGTTCTTACTTATAACAAATA- 

TTG served as the sense and anti-sense primers, respectively. Sall- 

BamHI restriction sites were added to their 5’ ends. Following cleavage 

of the PCR product with SUB and incomplete filling-in with dCTP and 

dTTP using PolIk, the PCR cut product (aa 15 to 83) was cloned into 

the BumHI-cleaved pET16b (Novagen, Madison, WI, USA) following 

incomplete filling-in with dATP and dGTP. Correct orientation of the 

ligated insert was determined using PCR, in the presence of a sense 

primer derived from the upstream domain of the PET-lhb cloning 

region and the anti-sense primer detailed above. Fidelity of the PCR 

product was assured by nt sequence analysis of the recombinant plas- 

mids. The His-Tat fusion protein is shown. It should be noticed that 

the filling-in and the ligation reaction restored the four aa ( I l- 15) of 
the Tat ORF, thus enabling the synthesis of aa 1 I to 83 of the Tat ORF 

within the fused His-Tat protein. 

tion of E. coli, protein expression was induced by IPTG. 
To optimize production of the fusion Tat protein in the 
bacterial cells, aliquots were removed at 0, 90, 150 and 
240 min after induction, and proteins were analyzed by 
SDS-PAGE (Fig. 2). It can be seen that 4 h following 
induction, the PET/TAT(S) plasmid expressed an approx. 
12-kDa protein. This protein was not induced following 
transfection with the pET/TAT(as). To confirm that the 
induced protein was encoded by the tat ORF of EIAV, 
Western analysis was performed using an anti Tat serum. 
prepared against an SI -derived oligopeptide (Noiman 
et al, 1991) (Fig. 2). The size of the 12-kDa band, specifi- 
cally detected by anti-Tat serum, is consistent with that 
expected of the fusion protein. Pre-immune serum or 
serum preadsorbed with the immunizing oligopeptide, 
did not recognize the Tat-specific band (data not shown). 
A minor band of approx. 9.5 kDa, which was stained with 
varying intensity in different preparations (data not 
shown) is probably a breakdown product of the fusion 
protein (Weiss et al., 1992). 

In order to produce greater amounts of the Tat protein, 
100 ml of exponentially growing transformed E. co/i cells 
were induced with IPTG. Whole-cell lysates were pre- 
pared and the His-Tat fusion protein was purified by 
affinity chromatography. As demonstrated in Fig. 3, the 
His-Tat fusion protein could be purified almost to homo- 
geneity by this one step. 

Since cleavage of the HisTag leader using Factor Xa 
was inefficient, preparative cleavage of the purified His- 
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Fig. 2. Induction of EIAV Tat protein in E. co/i. (A) BL21(DE3) cells 

(Novagen) were transfected with PET/TAT(S) (lanes b to f) or with 

pET/TAT(as) (lane a) as a negative control. Following transfection, 

protein synthesis was induced in mid logarithmic cultures of E. co[i, by 

the addition of 4 mM IPTG, according to the recommendation of the 

manufacturer. Following incubation for various periods of time (lane 

b, 0 min; lane c, 30 min; lane d, 90 min; lane e, 150 mitt; lanes a and f, 

240 min), aliquots of 5 x IO9 cells were harvested, lysed and subjected 

to electrophoresis on 0.1% SDS-15% PAGE. Proteins were stained 

with Coomassie brilliant blue and compared to prestained molecular 

mass protein standards (3343 kDa, BRL; lane M). (B) Crude lysates of 

uninduced (lane a) or I PTG-induced (lane b) cells were electrophoresed 

and proteins were electrophoretically transferred to nitrocellulose mem- 

branes using a Hoefer electroblotting apparatus. The blots were treated 

with rabbit polyclonal antibody raised against a peptide corresponding 

to aa 49-63 of the tat ORF (Noiman et al., 1991). Proteins were visual- 

ized with the enhanced chemiluminescence (ECL) Western blotting 

system (Amersham). Arrows indicate the Tat protein 

tagged Tat was achieved using CNBr. Since the EIAV 

Tat contains no internal Met residue, cleavage with CNBr 

took place at a Met residue within the upstream vector 

sequence (see Fig. 1). From 100 ml of liquid culture 

(40 mg total protein), approx. 20 mg of highly purified 

Tat protein were obtained. 

(b) Biological activity of the recombinant Tat protein 

Although many eukaryotic proteins can be synthesized 

in bacteria in high amounts, they are often not suitable 

for biochemical and functional analyses due to incorrect 

processing or lack of post-translational modifications. In 

order to investigate the activity of the bacterially- 

synthesized EIAV Tat protein, we employed the ‘scrape- 

loading’ approach (Gentz et al., 1989) to efficiently intro- 

duce the purified Tat protein into a canine thymus cell 

line containing the pEIAV LTR-CAT, in which the cat 

gene was under the control of the EIAV LTR (Sherman 

et al., 1988). CAT activity was assayed after 48 h, as 

previously described (Noiman et al., 1991). It can be seen 

(Fig. 4) that transient transfection of canine thymus cells 
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Fig. 3. Affinity purification of the bacterially-synthesized EIAV Tat pro- 

tein. (A) 3 h following transformation of PET/TAT(S) into BL21(DE3) 

cells, cells were induced with IPTG and 5 h later, 10” cells were har- 

vested and processed essentially as recommended by the supplier, with 

slight modifications as follows: after pelleting, cells were resuspended 

in column binding buffer (5 mM imidazole/0.5 M NaCl/6 M 

urea/20 mM TrisHCl pH 7.9) and disrupted by sonication. Cell debris 

was removed by centrifugation at 39 000 x g for 20 min and the cleared 

material was filtered through 0.45~urn filters (Millipore). The material 

(4 ml total volume) was then loaded onto the Novagen’s NiSO,-con- 

taining His-BindTM resin. Following two washes (15 ml each), the first 

one with binding buffer and the second one with slightly increased 

(20 mM) imidazole concentration, the His-Tat fusion protein was eluted 

with 15 ml elution buffer (1 M imidazole/0.5 M NaCl/6 M urea/20 mM 

TrisHCl, pH 7.9). From each purification step, 30 ml samples were 

examined on 0.1% SDS-15% PAGE and proteins were revealed by 

staining with Coomassie brilliant blue. Lane a, initial column load; lane 

b, column flow-through; lane c, first wash; lane d, second wash; lane e, 

eluent; lane M - molecular mass protein marker (BRL). The eluent, 

containing the Tat protein, was freed of urea and imidazole through a 

PDlO column (Pharmacia) by elution with PBS containing 0.5 mM 

MgCl, and I mM CaCl,. (B) Following CNBr digestion (IOOug 

CNBr/ml in 0.1 M HCl for 24 h) and lyophilization, the material was 

redissolved in binding buffer and after adjusting the pH to 7.9 it again 

was loaded onto Novagen’s NiSO,-containing His-BindTM resin. The 

column was washed with binding buffer and the flow-through contained 

the cleaved Tat, whereas the remaining His-tail and the uncleaved His- 

Tat were still bound to the column. The Tat protein was then desalted 

as described in A. Lane a, cleaved Tat protein: lane b, fused His-Tat 

protein; M. molecular mass protein markers. The arrows indicate the 

Tat protein. 

with pEIAV LTR-CAT plasmid, resulted in a very low 

basal CAT activity. Addition of purified recombinant Tat 

to these cells stimulated cat expression in a dose- 

dependent manner up to 24-fold. A synthetic EIAV Tat 

protein (Willbold et al., 1993) exhibited similar trans- 

activation profiles (data not shown). 

(c) Intracellular localization of the EIAV Tat protein 

The basic region of HIV-1 Tat contains a nucleolar 

localization signal which targets Tat to its correct intra- 

cellular location (Hauber et al., 1989; Ruben et al., 1989; 

Subramanian et al., 1990). In order to determine the loca- 

tion of the EIAV Tat, the purified bacterially synthesized 
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Fig. 4. Trans-activation assay of the bacterially synthesized purified 

His-Tat protein. Semi-confluent canine thymus cells (Cf2Th) (ATCC 

CRL 1430) were transfected with 5 ug of the reporter plasmid pEIAV 

LTR-CAT. 48 h later, medium was removed and various amounts of 

the purified His-Tat in PBS was added: lane a, 0; lane b, 200 ng; lane 

c, 500 ng; lane d, 1 ug; lane e, 10 ug; lane f, 25 pg. Cells were immediately 

scraped with a rubber policeman, and resuspended in medium contain- 

ing 10% fetal calf serum (Gentz et al., 1989). After 48 h incubation, 

CAT assay was performed as previously described (Sherman et al., 

1988). Percent conversions representing the amount of 

[“‘C]chloramphenicol converted to acetylated derivatives, are as fol- 

lows: a, 4%; b, 28%; c, 31%; d, 50%; e, 91%; f, 91%. 

EIAV Tat, was iodinated and then scrape-loaded into 
canine cells. Autoradiography showed that the EIAV Tat 
was located predominantly in the cytoplasm (Fig. 5a). 
The same cytoplasmic distribution was demonstrated by 
introducing a synthetic EIAV Tat protein (Willbold et al., 
1993) into canine cells (data not shown). In contrast, the 

a b C 

Fig. 5. Subcellular localization of the bacterially-synthesized Tat pro- 

tein. The bacterially synthesized CNBr-cleaved Tat protein of EIAV (a) 

and a synthetic Tat of HIV1 (b), were iodinated employing the chlora- 

mine T procedure (McConahey and Dixon, 1980), and introduced by 

scrape-loading into canine cells which were then grown on Culture 

Chamber Slides (Nunc). A mock control is shown in panel c. After 

incubation at 37°C for 24 h, cells were washed twice with PBS and then 

fixed with 2% paraformaldehyde for 10 min at room temperature (RT). 

Following dehydration steps in 70%, 85% and 100% ethanol (10 min 

at RT each), slides were air dried and cells were covered with NTB3 

emulsion (Kodak). After 9 days of exposure at 4”C, slides were devel- 

oped using Kodak D-19. Cells were then stained by 0.1% hematoxylene 

for 5 min and examined under light microscope. 

HIV Tat was located both in the nucleus as well as in 
the cytoplasm (Fig. 5b). The possibility that the cyto- 
plasmic location of the EIAV Tat was due to inefficient 
renaturation of the protein is unlikely, based on NMR 
spectroscopy studies which determined the three dimen- 
sional structure of both the recombinant, as well as the 
synthetic EIAV Tat proteins (Sticht et al., 1993; Willbold 
et al., 1993; 1994), thus suggesting complete renaturation 
of the recombinant Tat. The distinct patterns of distribu- 
tion of the EIAV and HIV Tat proteins are consistent 
with those observed in D17 cells, a canine osteosarcoma 
cell line (Carroll et al., 1992). The cytoplasmic location 
of the EIAV Tat protein suggests that the association of 
the Tat activation domain and a cellular factor may occur 
in the cytoplasm prior to nuclear import and Tat-TAR 
interaction (Carroll et al., 1992). In this regard it is of 
interest that the mutation ArgS2 -+Leu within the nuclear 
localization signal of the HIV Tat protein, which drasti- 
cally impaired its nuclear import, still preserved most of 
the trans-activation capacity (Sadie et al., 1990), suggest- 
ing that even low levels of nuclear Tat are sufficient for 
trans-activation to occur. 
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