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Biological context

Extremely halophilic Arachaea are a group of mi-

conditions and NMR experiments applied (Im et al.,
1998).

croorganisms that require high salt concentrations of Methods and results

up to 4.5 M for growth.Halobacterium salinarum

one of the halophilic organisms most thoroughly stud- Ferredoxin was isolated frontd. salinarum cells
ied, encodes a [2Fe-2S] ferredoxin with a size of 128 which were grown in high salt medium. For the
amino acids that was reported to serve as an electronisotopic ¢°N and 13C/1°N) labeled protein samples
carrier in the decarboxylation afketoacids (Kerscher  the peptone in the high salt medium was substituted
and Oesterhelt, 1977). The core fold of this halophilic by the corresponding labeled peptone prepared from
ferredoxin, which coordinates the iron—sulfur clus- Scenedesmus obliquatgae as described previously
ter, shares a high sequence similarity with plant-type (Patzelt et al., 1997). The cell lysate was prepared
[2Fe-2S] ferredoxins and the patterns of the cluster- following protocol 6 for the isolation of purple mem-
ligating cysteines is identical. One major difference branes until step 3 (Robb et al., 1995). Ferredoxin
to plant-type [2Fe-2S]-ferredoxins is the presence of was purified from the supernatant by ammonium sul-
an additional domain (residues 6—38)Hnsalinarum fate precipitation followed by a Sepharose 4B column
ferredoxin that contains a large excess of negative and a DEAE-Sephadex column according to Werber
charges, and was suggested to play a major role in and Mevarech (1978). Samples with amp#A2g0 ab-

halophilic adaption (Hase et al., 1977).

Up to present, structural information about
halophilic ferredoxins is limited to the crystal struc-
ture of Haloarcula marismortuiferredoxin (Frolow
et al., 1996) while no detailed NMR spectroscopic
information is yet available for this class of proteins.

We assignedtH, 13C, and°N resonances and
deduced the secondary structure léf salinarum
ferredoxin from multidimensional heteronuclear NMR
data. For [2Fe-2S]-ferredoxins, the availability of high
resolution NMR data in the cluster vicinity is ham-
pered by paramagnetic relaxation, with the extent

sorbance ratio greater than 0.3 proved to be sufficiently
pure for the NMR spectroscopic studies. NMR sample
conditions were : 0.8-1.0 mM oxidized ferredoxin,
50 mM potassium phosphate, pH 6.5, 450 mM sodium
chloride in HO/D,0 (9:1). Samples for the measure-
ments in DO were prepared by dissolution of the
lyophilized protein in RO (99.996%).

All NMR experiments were acquired on a Bruker
DRX 600 spectrometer at a temperature of°C5
The following 3D-NMR spectra were recorded
for backbone and aliphatic resonance assignment:
HNCO, HNCA, HNCACB, CBCA(CO)NH, H(C)CH-

of unobserved resonances depending on the sampleCOSY, HBHA(CO)NH, cp-HC(C)H-TOCSY,!>N-

*To whom correspondence should be addressed. E-mail:

Heinrich.Sticht@uni-bayreuth.de

edited TOCSY and HNHA (Bax and Grzesiek, 1993;
Sattler et al., 1999). For the assignment of aromatic
proton resonances 23BH,'H] DQF-COSY, TOCSY,
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Figure 1. (A) 600 MHz [15N,1H]-HSQC spectrum of3C/15N labeledH. salinarumferredoxin at 13C. Resonances are labeled with the
corresponding sequence positions. Side-chaip Kdonances are connected with a line. sc denotes side-chain resonances of arginines (HE1),

of Trp 16, 59 (HE1) and acetylated Lys 118 (HZ1). Aliased resonances are marked with an asterisk, doubly aliased resonances of arginine side
chains (Rsc) are marked with two asterisks. (B) Secondary chemical shift indices for HA, CA and CO nticlsabfiarumferredoxin. The

artwork at the top indicates the deduced secondary structure. The asterisks mark the not observed residues near the paramagnetic cluster.

and NOESY spectra of an unlabeled sample yOD The analysis of the secondary chemical shifts of
were recorded. The backbone resonances were auHA, CA and CO nuclei (Figure 1B) allowed the identi-
tomatically assigned with an in-house written search fication of the secondary structure elementslo$ali-

algorithm using inter- and intraresidual Gind ¢ narumferredoxin. The secondary structure pattern is
chemical shifts for sequential linking of amide reso- highly similar to that found for thed. marismortui
nances and amino acid type determination. ferredoxin. The assignéd, 13C, 15N chemical shifts

of H. salinariumferredoxin have been deposited in the
BioMagResBank, accession code 4444,
Extent of assignments and data deposition
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