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Summary. Accurate estimations of experimental uncertainties of relaxation rates are of vital impor-

tance for the interpretation of relaxation data, in particular for the Lipari-Szabo ‘model free’ approach

and for comparative relaxation studies. Here we report a systematic investigation of different methods

for the estimation of experimental uncertainties on longitudinal R1 and transversal R2 rates using two

different schemes for sampling the rates. We show that certain combinations of sampling strategies

and methods of estimating experimental uncertainties result in wrong rates and rate errors. Practical

recommendations for obtaining proper rate and rate uncertainties are deduced.

Keywords. NMR spectroscopy; Proteins; Dynamic processes; Structure elucidation.

Introduction

Analysis of nuclear magnetic resonance-(NMR)-relaxation data provides important
information on the internal mobility in a polypeptide chain on various time-scales.
Studies of protein dynamics often accompany structural investigations providing
useful insights into enzyme function, protein folding, and protein stability
(reviewed in Refs. [1–3]). Two approaches are commonly used for analysis of
relaxation data, namely spectral density mapping [4–6] and the Lipari-Szabo
‘model free’ formalism [7–9], which extensively uses statistical tests involving
experimental uncertainties for parameter selection [10]. Accurate rates as well as
accurate uncertainties are of vital importance for meaningful interpretation of
relaxation data using the ‘model free’ approach. Similarly, comparative studies
of the internal mobility, e.g. of different variants of a protein, demand high accu-
racy and precision, as in many cases only small differences will be observable.
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15N Relaxation, which is routinely used to probe backbone-amide dynamics, is
experimentally measured via the longitudinal and transversal relaxation rates and
the heteronuclear nuclear Overhauser effect (NOE) [6, 11, 12]. Rates are obtained
by fitting mono-exponential decays to signal intensities extracted from a series of
[1H–15N]-HSQC type spectra recorded with different delays during evolution to
allow for relaxation [11, 12]. For accurate and precise rates and rate uncertainties it
is crucial to maintain stable experimental conditions throughout the experiments
[12–14]. A quantitative description of experimental uncertainties of relaxation data
has been given by Fischer et al. [3]. Experimental data, however, can be consider-
ably influenced by the way the data are treated. In a recent study Viles et al. have
pointed out that the method of peak height extraction and the choice of the param-
etrization for the fitting procedure affect both, accuracy and precision of the rates
obtained [15].

Even the sampling strategy, that is the choice of relaxation delays and the
number of repeated experiments for a given delay, affects accuracy and precision
during the fitting procedure. Conventionally, relaxation rates were obtained by
measuring multiple time points scattered throughout the exponential decay of
which typically only few were measured in duplicate for the purpose of error
estimation [16, 17]. Jones et al. proposed an optimized sampling strategy that mini-
mizes the error introduced by fitting to a mono-exponential decay according to
the Cramer-Rao theorem [18]. For this protocol only two selected time points
are required, one placed at zero-time and one placed at a time corresponding to 1.3
times the decay rate. Weighting of the time points is crucial: 22% of the data points
have to be placed at zero-time and 78% have to be recorded at the latter time point.
With both schemes rates are usually fit by a non-linear least-square Levenberg-
Marquardt algorithm [19, 20]. Simultaneously with fitting, experimental uncertain-
ties for rates are determined using either Monte Carlo (MC) simulations [19, 20] or
the Jackknife (JK) procedure [19, 21, 22], both having different requirements.
While MC requires an associated uncertainty for each data point considered, e.g.
the standard deviation of multiply recorded time points, JK also works with singly
recorded data points without an associated uncertainty. Following we show that the
results obtained with a particular method for error estimation critically depend on
how the data points were sampled.

Results and Discussions

R1 and R2
15N relaxation rates for the birch pollen allergen Bet v 4, a calcium-

binding two EF-hand protein [23, 24; protein data bank (PDB) access code: 1H4B],
were experimentally determined using the above mentioned sampling strategies (see
Materials and Methods). Ideally, approximately identical values for rates and smaller
rate uncertainties in the case of optimized sampling would be expected from both
strategies regardless of the fitting procedure. However, inconsistent results are
obtained when applying the different methods for fitting and estimating the error
to experimental data (Fig. 1), even within the same sampling strategy. Most pro-
nounced is the difference in errors in the conventional sampling strategy seen by
much smaller error bars for MC, as compared to the error bars from JK (results from
JK were identical whether peak height uncertainties were considered or not).
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Moreover, both R1 and R2 data show different rates depending on the error estima-
tion method. Scattering of the data points indicates that these differences are larger
with the conventional sampling strategy. Table 1 shows the average values and their
standard deviations over 65 experimental R1 and 66 experimental R2 rates. In gen-
eral, a better correlation can be observed within the optimized sampling scheme. The
comparison of differences D(MC-JK) between error estimation with the MC and the
JK method in general show better agreement of data obtained with the optimized
sampling scheme, as indicated by smaller average differences and smaller stan-
dard deviations. In case of the differences D(MC-JK) of fitted errors dR a strong

Fig. 1. Panels A and B show experimental R1 and R2 rates and their associated uncertainties for Bet

v 4 determined by the JK procedure and by MC simulations; data from the conventional sampling

scheme are depicted in black, data from the optimized sampling scheme are shown in grey; both

panels show that – depending on the method of error estimation – rates and their uncertainties deter-

mined from conventional sampling correlate less than those determined from optimized sampling

Table 1. Comparison of experimental rates R1 and R2 and their uncertainties dR1 and dR2 obtained

from MC and JK

Differences D(MC-JK) DR1=s�1 DdR1=s�1 DR2=s�1 DdR2=s�1

conventional 0.001 � 0.035 20.0146 0.013 0.041 � 0.176 20.0926 0.074

optimized 0.001 � 0.006 �0.002 � 0.002 �0.003 � 0.103 �0.037 � 0.033

Correlation (MC, JK) R1 dR1 R2 dR2

conventional 0.945 0.388 0.980 0.497

optimized 0.998 0.966 0.994 0.754

Average uncertainties dR1=s�1 dR2=s�1

MC JK MC JK

conventional 0.0100 � 0.0078 0.0237 � 0.0139 0.056 � 0.044 0.148 � 0.085

optimized 0.0133 � 0.0076 0.0152 � 0.0084 0.060 � 0.038 0.097 � 0.051
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disagreement is found for the conventional sampling scheme (Table 1, bold). The
negative difference indicates that MC values are systematically smaller than JK
values with this sampling method. On average, the rates show reasonable to good
correlation. However, there is little pairwise correlation between MC- and JK-errors
in conventional sampling as indicated by the large standard deviation of the differ-
ences (as compared to optimized sampling) and by the pairwise correlation coeffi-
cient (Table 1, bold italic). Comparing the average uncertainties dR reveals that the
JK uncertainties decrease as expected when switching from conventional to opti-
mized sampling. In contrast, MC uncertainties (Table 1, underlined) are unexpect-
edly smaller with conventional sampling than with optimized sampling, yet
indicating a problem in the combination of conventional sampling and MC simula-
tions for error estimations. Within the optimal sampling scheme both methods, MC
and JK, result in errors of similar size with the MC errors being smaller.

Because the true rates and the true peak height standard deviations are not
known in experimental data, it is difficult to determine the source of this discre-
pancy. Therefore, to further address the source of the previously described incon-
sistency, we simulated data sets using the same time points for sampling as in the
experimental data sets and using known parameters representative for the longi-
tudinal relaxation of Bet v 4. Like the experimental data, the simulated data also
show an inconsistency in rates and errors (Fig. 2, Table 2). Simulated data sets in
Table 2 were generated with sampling times corresponding to those experimentally
applied (data sets ‘‘conventional’’ and ‘‘optimized’’; 13 data points each). In addi-
tion, an improved synthetic data set ‘‘optimal 17’’ with two time points, 17 data
points, and the second sampling time derived from the actual rate Rsim was gen-
erated according to Jones et al. [18]. As already seen in the differences between
MC- and JK-derived experimental data (Table 1), both methods produce inconsis-
tent results with conventional sampling (Table 2, bold). Again the average rate has
a large standard deviation and the average uncertainty is systematically smaller
with MC simulations. With better placement of sampling times and a growing
number of repeats per time, both, MC and JK, result in increasingly consistent
results. This is corroborated by the pairwise correlation coefficients, which are
worst for conventional sampling (Table 2, bold italic). Comparing the standard
deviations of the average rates shows that in general there is good agreement
between MC and JK derived data for optimal sampling. However, for conventional
sampling MC results in an approximately 2.5 fold larger standard deviation
(Table 2, dotted) compared to JK methods. This is unexpected because the raw
data for fitting are taken from essentially the same distribution. Again as observed
for experimental rates (Table 1), the average uncertainty from MC is unexpectedly
smaller for conventional sampling than for optimized sampling (Table 2, under-
lined). This is unexpected because this sampling scheme is designed to achieve the
opposite, namely a smaller error by improving the statistical basis, in this case the
number of points per delay and their corresponding position along the exponential
decay [18, 25]. It is, however, also shown that under ideal conditions – here,
appropriate placement of time points and sufficient number of data points (data
set ‘‘optimal 17’’) – all fitting methods give identical rates and rate uncertainties.

To evaluate the dependence of the error-estimation methods on the sampling
scheme we have performed standard statistical tests on (�, �=

ffiffiffiffiffiffiffiffi

100
p

) – normal
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distributions of rates. These have been generated using the central limit theorem
(CLT) to ensure normally distributed variates as described in Material and Methods.
Distributions were generated using conventional and optimized sampling schemes
and JK, JK-E (Jackknifing considering explicit signal uncertainties), and MC meth-
ods for estimating the errors, respectively. In Table 3-A we show the results of an
F-test for identical variances (null hypothesis H0 : �

2
CLT1 ¼ �2

CLT2) between rate-
distributions of the conventional and the optimized sampling scheme that have been
fit using the JK, the JK-E, and the MC method for error estimation. It can be seen, as
stated above, that methods incorporating the experimental uncertainties, namely MC

Fig. 2. Panel A and Panel B depict rates and their associated errors, respectively, obtained from

fitting 1000 simulated data sets, each with 13 peak height data points back calculated from a rate

Rsim¼ 1.87 s�1 plus randomly distributed peak height noise with a standard deviation �¼ 0.02; data

points that correspond to conventional sampling are colored black, those corresponding to optimized

sampling are shown in grey; the results corroborate the findings for experimental data (Fig. 1); panels

C and D show rates and their errors obtained from fitting 1000 data sets with 50 data points that were

placed exactly according to the optimal sampling scheme for mono-exponential decays [18]; it can

be seen that under ideal conditions both methods of error estimation result in identical results for

rates as well as for uncertainties
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and JK-E, yield identical results (Table 3A, underlined). It is further shown that the
JK method produces results that are consistent with results compared to other error
estimation methods within the same sampling strategy and that they are independent
of the sampling scheme. Also, results from both sampling schemes fit with the JK
method are comparable. In contrast, the MC=JK-E methods produce results compar-
able to the JK method only within the optimized sampling scheme (Table 3A, bold),
but not with conventional sampling. Even MC=JK-E results from optimized sam-
pling can not be compared to MC=JK-E results from conventional sampling (Table
3A, italic). To further delineate the problem we have generated data sets lying in
between the conventional and the optimized sampling schemes by systematically
decreasing the number of time points while simultaneously increasing the number of
repeats per time point. The total number of data points was kept constant. Table 3B
shows F-test for equal variances (null hypothesis H0 : �2

JK ¼ �2
MC) and t-test for

equal average rates (null hypothesis H0 : hRJKi ¼ hRMCi) of distributions generated
with different sampling schemes. It can clearly be seen that with the conventional
sampling scheme – and even with a sampling scheme that samples every time point
at least twice (data set ‘‘double’’) – the variances of the rate distributions cannot be
compared. However, if each time point is sampled at least three times (data set
‘‘triple’’), variances and means of rates from JK- and MC-derived distributions
become comparable. There is only little difference left to the optimized sampling
strategy, in which the positions of time points were based on estimates made before

Table 2. Comparison of the fitting of synthetic data derived from conventional, optimized, and

optimal sampling

Differences D(MC-JK) DRsim=s�1 DdRsim=s�1

conventional 0.00026 0.0164 20.00366 0.0036

optimized �0.0001 � 0.0030 �0.0010 � 0.0011

optimal 17 0.0000 � 0.0000 �0.0002 � 0.0001

Correlation (MC, JK) Rsim dRsim

conventional 0.474 0.384

optimized 0.918 0.787

optimal 17 1.000 0.996

Average rates Rsim=s�1

MC JK

conventional 1.8706 � 0.0187 1.8704 � 0.0091

optimized 1.8701 � 0.0075 1.8702 � 0.0069

optimal 17 1.8700 � 0.0051 1.8700 � 0.0051

Average uncertainties dRsim=s�1

MC JK

conventional 0.0057 � 0.0037 0.0096 � 0.0028

optimized 0.0058 � 0.0017 0.0068 � 0.0016

optimal 17 0.0053 � 0.0010 0.0054 � 0.0010
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the rates were fit (see Materials and Methods). When time points are placed at
positions exactly fulfilling the requirements for optimized sampling according to
Jones et al., JK and MC results become identical, as seen for the data sets ‘‘optimal
17’’ (see above) and optimal 50 (two time points, 50 (11þ 39) data points). Con-
vergence of results in the latter cases clearly demonstrates that JK, JK-E, and MC
work properly. In practice, however, such excellent consistency between MC and JK
will be difficult to obtain as rather large number of spectra have to be recorded and
as real samples always exhibit a distribution of rates. It can also be seen that JK
produces much more consistent results than MC, i.e. a much narrower range of hRi
and �, independent of the sampling scheme applied.

Taking the evidence from experiments and simulations given above it becomes
clear that error estimation on the basis of MC simulations or the JK-E procedure is
not suggested with non-optimal sampling strategies. The reason for wrong esti-
mates of the uncertainty – and even wrong rates – lies in how the experimental
uncertainties, i.e. intensity standard deviations, for the individual data points are

Table 3. Test statistics of (�, �=
ffiffiffiffiffiffiffiffi

100
p

) CLT-normal distributions of rates that were generated from

5000 data sets (Rsim¼ 1.87 s�1, �peak height¼ 0.02); A) F-test for equal variances of distributions

obtained by fitting the conventional and the optimized sampling schemes using the MC, JK, and JK-E

method for error estimation; B) F-test for equal variances and t-test for equal average rates of

distributions generated from various sampling schemes using MC and JK for error estimation

A)

Optimized Conventional

MC JK-E JK MC JK-E

optimized JK 28.2% 28.2% 6.1% 0.0% 0.0%

MC 100% 42.2% 0.0% 0.0%

JK-E 42.2% 0.0% 0.0%

conventional JK 0.0% 0.0%

MC 100%

B)

Convent. Double Triple Optimized Optimal 17 Optimal 50

JK hRi=s�1 1.87023 1.87018 1.87026 1.87010 1.87008 1.87007

�=s�1 0.00091 0.00083 0.00075 0.00069 0.00053 0.00029

MC hRi=s�1 1.87056 1.87090 1.87016 1.87004 1.87009 1.87007

�=s�1 0.00196 0.00469 0.00087 0.00081 0.00053 0.00029

�� (F-test)a

H0: �2
JK ¼ �2

MC

0.0% 0.0% 27.6% 28.2% 99.8% 99.6%

�� (t-test)a

H0: hRJKi¼ hRMCi
28.6% 28.2% 53.0% 69.3% 92.0% 100%

data points 13 13 13 13 17 50

time points 10 6 4 3 2 2

a Empirical levels of significance �� are reported indicating statistical significant differences when

���� (�¼ 5%)
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determined. These are a mandatory requirement for MC which will not work if
there are no signal intensity uncertainties, as is the case of singly recorded time
points, or if the uncertainty is close to zero. Because relaxation measurements of
proteins are very time demanding (several days) only a limited number of data
points can be obtained. Therefore, with the conventional sampling protocol only
few time points are recorded twice for which the uncertainty can be calculated. For
singly recorded time points uncertainties are then calculated by interpolation and
extrapolation from the uncertainties of the multiply recorded time points. Usually,
the duplicate data points are not identical, resulting in a signal intensity standard
deviation greater than zero. However, in rare cases when the result is zero MC error
simulations will fail. In many more cases the measured peak heights of doubly
recorded data points will be similar and result in very small peak height uncertain-
ties. The MC method will not terminate in such a case. However, interpolation or
extrapolation to singly recorded time points artificially spreads these small uncer-
tainties, resulting in distorted statistical weights for the individual data points.
Consequently, severe artifacts will arise during fitting, which subsequently lead
to misinterpretation of the dynamic behavior of the protein. A practical example
is found in the R1 – spectra of Bet v 4, where the second duplicate time point at
125 ms has a peak height standard deviation of only 0.00007 units. Interpolation to
the immediate neighboring peaks, which all have been recorded singly, leads to too
small peak height uncertainties for these data points. Extrapolation of the errors for
those data points after the third, last duplicate time point leads to errors that are
much too large for the following, final time points. As a consequence, MC results
in a rate of 4.87� 0.01 s�1 while JK gives a rate of 1.78� 0.01 s�1. Analyzing the
fitted I(0) intensities reveals that the MC result is wrong (I(0)MC¼ 11.5, I(0)JK¼
7.85; I(0.007)exp¼ 7.78). This is clearly a consequence of the weak statistical basis
for the determination of the peak height uncertainties which is further enhanced by
inter- and extrapolation. With the optimized sampling strategy (with 4, 4, and 5
data points per time) both, MC and JK, give more consistent results (RMC¼
1.8308� 0.0090 s�1, RJK¼ 1.8336� 0.0097 s�1). With the conventional sampling
scheme approximately 10% of the peaks used in this analysis show differences
in rates that can be related to improperly determined peak height uncertainties.
Underdetermination of the distribution at multiply recorded time points also serves
as an explanation why the errors from MC simulations in non-optimized sampling
strategies generally do not correlate well with the errors determined with other
methods or those determined from optimized sampling strategies, respectively.
Although experimentally determined uncertainties should in general be used in
the course of the fitting routine – as they put appropriate weights on the data points
[19] – we have shown here that it is better to employ methods that do not require
experimental peak height uncertainties rather than using ill-defined or even wrong
estimates for experimental intensities.

An alternative approach to get peak height uncertainties, which has also been applied in the past, is

to take the baseline noise as peak height uncertainty [26]. Although the average noise – measured at 20

positions in spectra of Bet v 4 with no peak nearby – is comparable in size to the average variation of

the peak heights, this approach neglects the scattering of peak height standard deviations for different

peaks. In the case of Bet v 4 the standard deviations for different peaks vary up to an order of

magnitude (for a discussion of possible sources see Ref. [15]).
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In conclusion, our results suggest that singly recorded data points should be
avoided and that optimized sampling strategies should be applied. This is espe-
cially important if only a limited number of data points is sampled, as is generally
the case in NMR spectroscopy. While optimized sampling strategies might not be
easily applicable under all circumstances, our data indicate that it is important to
increase the number of repeats per time point even with non-optimal placement of
sampling times. For reasonable results every time point should be sampled at least
three times. If, however, a sampling scheme involving singly recorded time points
has to be employed, fitting and error estimation should be carried out with a
method such as the Jackknife procedure that does not require experimental inten-
sity uncertainties as input. Inter- and extrapolation of uncertainties should be
avoided. Our findings are generally applicable to problems where rates or constants
have to be fit to a small statistical basis, e.g. the determination of binding constants.

Experimental

Recombinant 15N-enriched Bet v 4 was prepared as described elsewhere [24]. NMR-experiments for

determining the longitudinal and transversal 15N relaxation rates were recorded on a Bruker Avance

DRX 600 spectrometer at 298 K in 5 mM ammonium acetate buffer, 25 mM calcium chloride, 0.02%

sodium azide, and 10% D2O at pH 6 (uncorrected meter reading) with a protein concentration of

1.5 mM. For R1 thirteen data points’ rates were recorded with delays of 6.9 (2x), 28.3, 60.5, 124.9 (2x),

253.6, 500.3, 752.4, 1004.4 (2x), 1497.8, and 2001.9 ms for the conventional sampling scheme. For the

optimized sampling scheme we sampled 4 data points at 6.9 ms, 4 points at 752.4 ms, and 5 points at

1004.4 ms. The points at 752.4 ms and 1004.4 ms correspond to approximately 1.3 times the fastest and

the slowest expected rate, respectively [18, 25]. Estimates for the fastest and slowest rate were taken

from a study on the related protein parvalbumin [27]. For R2 we recorded 28 spectra with different

relaxation times from which data sets corresponding to the conventional (18.4 (2x), 36.7, 73.4, 110.1

(2x), 146.8, 183.6 (2x), 220.3, 275.3 (2x), and 367.1 ms) and the optimized sampling scheme (18.4

(3x), 183.6 (5x), and 275.3 ms (5x)) were extracted. HSQC-type spectra [6] were recorded with

spectral widths of 7184 Hz in 1H and 1277 Hz in 15N, respectively. R1 spectra were recorded with

2048�256 complex data points in the time domains, respectively 1024�200 complex points for R2

spectra. A repetition delay of two seconds was employed.

Spectra were processed using NMRPipe [28]. Forward-backward linear prediction was employed

to predict 100 data points and Lorentz-Gauss window functions providing moderate resolution

enhancement were applied. Both operations were chosen to not distort signal intensities compared

to untreated spectra. Zerofilling to 4096�1024 data points was performed. Only non-overlapping peaks

were taken into account. Signal intensities were measured as peak heights using NMRView [29]. The

position for peak height extraction was determined in spectra with highest signal-to-noise ratio and

kept fixed thereafter. Rates were fitted to mono-exponential two parameter equations using the non-

linear Levenberg-Marquardt routine provided by Curvefit (A.G. Palmer III, v. 1.22: http:==cpmcnet.

columbia.edu=dept=gsas=biochem=labs=palmer).

Rate uncertainties were determined using the Jackknife procedure as well as Monte Carlo simula-

tions, both from the program Curvefit. For MC based error estimations 500 simulations based on peak

heights and their associated standard deviations derived from repeatedly recorded time points were

carried out. Increasing the number of simulations to 1000 did not improve results. In case of the con-

ventional sampling strategy, peak height standard deviations for singly recorded time points were

obtained by linear interpolation and extrapolation from adjacent, multiply recorded time points. Error

estimations with the JK procedure were performed with and without taking peak height standard

deviations into account.
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Simulated data with typical R1 rates from Bet v 4 were generated to probe the experimental results.

Thirteen peak heights at time points corresponding to the experimentally applied sampling schemes

were generated assuming a mono-exponential decay with a rate Rsim of 1.87 s�1 and an initial intensity

I0 of 6.09 (conventional: 7 (2x), 28, 61, 125 (2x), 254, 500, 752, 1004 (2x), 1498, 2002 ms; optimized:

7 (4x), 752 (4x), 1004 ms (5x)). Normally distributed random noise with a standard deviation �¼ 0.02

was generated on top of the simulated peak height [19, 30]. A total of 1000 data sets was generated and

subsequently fitted using the same protocols as employed with the experimental data. Further data sets

with a total of 13 data points but with different combinations of the number of time points and number

of repeats per time point were generated. In particular, one data set was generated where every time

point was sampled at least twice (2x: 7, 100, 200, 400, 800 ms; 3x: 1200 ms). In another data set, every

time point (3x: 7, 200, 600 ms; 4x: 1200 ms) was sampled at least three times. The fidelity of the error

estimation was tested using a data set with 17 data points (0 s (4x or 23.5% of data points),
1:3=1:87 s�1 ¼ 695 ms (13x or 76.5% of data points)), in which the distribution of sampling points is

closer to the requirements for the optimized sampling strategy than with 13 data points. Further a data

set with 50 points exactly fulfilling the requirements of the optimized sampling scheme was generated

(0 s (11x, 22%)), 695 ms (39x, 78%)). For statistical data analysis we generated rate distributions with

5000 rates each that were transformed into (�, �=
ffiffiffi

n
p

)-normal distributions using the CLT. Here, n is the

number of rates per bin, � is the standard deviation of the original distribution, and � is the mean value

of both, the original distribution and the newly generated distribution. In particular, 50 bins each with

n¼ 100 have been used to generate the (�, �=
ffiffiffiffiffiffiffiffi

100
p

) CLT-normal distributions, which were analyzed

using t-test testing for equal average rates hRi between distributions fitted using the JK and MC

method, respectively. Further, using an F-test we tested for equal variances between all distributions

generated, thus comparing all combinations of sampling strategies and all methods for error estimation

investigated here [19]. A level of significance � of 5% was employed in all statistical tests.
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