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ABSTRACT: The catalytic activity of Src-family kinases is regulated by association with its SH3 and SH2
domains. Activation requires displacement of intermolecular contacts by SH3/SH2 binding ligands resulting
in dissociation of the SH3 and SH2 domains from the kinase domain. To understand the contribution of
the SH3-SH2 domain pair to this regulatory process, the binding of peptides derived from physiologically
relevant SH2 and SH3 interaction partners was studied for Lck and its relative Fyn by NMR spectroscopy.
In contrast to Fyn, activating ligands do not induce communication between SH2 and SH3 domains in
Lck. This can be attributed to the particular properties of the Lck SH3-SH2 linker which is shown to be
extremely flexible thus effectively decoupling the behavior of the SH3 and SH2 domains. Measurements
on the SH32 tandem from Lck further revealed a relative domain orientation that is distinctly different
from that found in the Lck SH32 crystal structure and in other Src kinases. These data suggest that flexibility
between SH2 and SH3 domains contributes to the adaptation of Src-family kinases to specific environments
and distinct functions.

Src family tyrosine kinases are implicated in a large
number of cellular processes including cell adhesion and
spreading, focal adhesion formation and disassembly, cell
migration, cell cycle progression, apoptosis, cell differentia-
tion, and gene transcription (1, 2). Mutations in these proteins
can also lead to cancer (3). All members of the family (Src,
Blk, Fgr, Fyn, Hck, Lck, Lyn, Yes, Yrk) have a common
molecular architecture that includes regulatory SH31 and SH2
domains and a kinase domain. In its inactive state, the kinase
is inhibited by binding of the SH2 domain to a conserved
tyrosine in the C-terminal regulatory tail and by binding of
the SH3 domain to the SH2-kinase linker region (4-6).
Dephosphorylation of this conserved tyrosine (7) or binding
of competing ligands to the SH2 or SH3 domains (8)
activates the kinase. Young et al. (9) suggested that coupling
between SH2 and SH3 is important in controlling activation,
because mutations of residues in the SH3-SH2 linker

activated c-Src. Molecular dynamics simulations also sug-
gested that, in the inactive state, the coupling between the
SH3-SH2 dynamics was tight, and that this no longer
applies when the regulatory tail is detached from the SH2
domain (9). Hence, they proposed that the SH3-SH2-kinase
assembly represented an “inducible snap lock”.

While the crystal structures of c-Src and Hck have
provided a wealth of structural information on the closed,
inactive state of Src-kinases, the open state is much less well
characterized, in terms of both structure and dynamics.
Crystal structures have been obtained for the SH3-SH2
domain pairs of Lck (10) and Fyn (11). These fragments
might be expected to behave in a similar way to the domains
when they are detached from the kinase in the activated state.
There has, therefore, been some previous interest in studying
the solution behavior of SH3-SH2 domain pairs including
those of Src (12), Abl (13), and Fyn (14). Comparison of
the domain orientation observed in the Fyn SH32 crystal
structure with the domain orientation of peptide bound Fyn
SH32 observed in solution showed a relatively modest
average domain reorientation along one rotation axis. This
is consistent with a situation that is intermediate between a
rigid and a completely decoupled interdomain interface (14).
Intriguingly, the orientation between the SH3 and SH2
domains in the crystal structure of Lck SH32 is very different
from that observed for other Src-family members. Here
solution NMR spectroscopy is used to determine the domain
orientation of Lck SH32 in solution and to characterize the
dynamics of this domain pair. Binding of peptides derived
from physiologically relevant ligands to both Fyn SH32 and
Lck SH32 is also investigated to provide further insight into
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the contribution made by SH3-SH2 domain pairs to the
regulation of Src kinases.

MATERIALS AND METHODS

Protein Production and Peptide Ligands.Expression and
purification of the SH3-SH2 domain pairs of human Lck
(Lck SH32; residues 57-225) and Fyn (Fyn SH32; residues
81-247 with C239S, C240S, and C246S) were performed
as described previously (11, 14, 15). Minimal medium with
15NH4Cl and if necessary D2O instead of H2O was used to
produce15N-labeled Lck SH32 and15N,2H-labeled Fyn SH32.
Purity of the sample was confirmed by SDS-polyacrylamide
gel electrophoresis, and concentration was assessed by the
optical density at 280 nm, using extinction coefficients
calculated from the amino acid sequence.

Peptide ligands for SH3 and SH2 binding experiments
were purchased from Biosyntan (Berlin, Germany) and
Coring (Gernsheim, Germany) and contained blocked end
groups. The Tip peptide comprises residues 167-199 of the
tyrosine-kinase interacting (Tip) protein from Herpesvirus
saimiri strain C488 and the phosphorylated HMTA peptide
the CQ(pY)EEIP sequence from the middle T antigen of
hamster polyomavirus. The Pf C point mutation at the
N-terminal sequence position of the investigated peptide was
shown to have no effect on SH2 binding affinity (Hofinger
and Sticht, unpublished).

NMR Sample Preparation and Data Acquisition.Protein
solutions were prepared in the following buffer conditions:
100 mM K2HPO4/KH2PO4, pH 6.5, 20 mM NaCl for Lck
SH32 and 50 mM K2HPO4/KH2PO4, pH 7.0, 200 mM Na2-
SO4 for Fyn SH32. For the peptide titrations, aliquots of
peptide of known concentration were first dried using a
Speed-Vac apparatus and successive aliquots were then
dissolved in the sample solution.

Polyacrylamide gels were prepared as described by Chou
et al. (16) and were squeezed into an open-ended NMR tube
by application of pressure, using a home-built squeezer. For
recording residual dipolar couplings in liquid crystalline
medium, a sample of 450µM Lck SH32 in monododecyl-
pentaethyleneglycol-ether/hexanol (molar ratio 0.95; 3% (wt)
C12E5/H2O) was used that was prepared as described in
Rückert & Otting (17). For all systems, proper alignment
was checked by measuring the quadrupolar splitting of the
deuterium resonance of D2O. NMR experiments were
performed on spectrometers operating at1H frequencies of
500, 600, and 750 MHz. Unless otherwise stated, all spectra
were recorded at 25°C. Backbone resonance assignments
of Lck SH32 and Fyn SH32 have been described previously
(11, 15).

Measurement and Interpretation of Relaxation Data.Two-
dimensional{1H}-15N heteronuclear NOE experiments and
a series of1H-15N correlation spectra for the determination
of 15N T1 and T2 relaxation time constants were acquired
using previously described methods incorporating pulsed
field gradients for coherence pathway selection and water
suppression (18-20). 15N-T2 constants were measured using
a spin-echo sequence with a Carr-Purcell-Meiboom-Gill
(CPMG) delay of 419.4µs. Dipolar and chemical shift
anisotropy (CSA) cross-correlation occurring during delay
periods were removed by applying1H 180° pulses. This was
performed once in the middle of the CPMG delay block for

15N-T2 experiments and every 5 ms in the delay period of
15N-T1 experiments (21, 22). The total sample heating for
different experiments was equalized by application of a
“heat” pulse train to keep the total number of15N 180° pulses
constant for all experiments. Each series ofT1 and T2

measurements consisted of 8 autocorrelation spectra with
increasing15N relaxation time delays, chosen to sample
approximately the entirety of the observed intensity decays.
All spectra were processed with mild resolution enhancement
and linear prediction in the indirect dimension using Felix
2.3 (Biosym, San Diego, CA). After zero filling, the digital
resolution of the spectra was 6.1 Hz/point in the1H
dimension and 1.3 Hz/point in the15N dimension. Relaxation
parameters were estimated from two parameter exponential
fits to the intensity decays in the series ofT1 T2 correlation
spectra. Errors were estimated using the baseline noise (23).

To test initially for the aggregation state of free Lck SH32,
experimentalT1 andT2 relaxation times were compared with
calculated relaxation times as a function of isotropic cor-
relation time and order parameter (S2) using the Lipari and
Szabo model (24). For Lck SH32 correlation times and
diffusion tensors were derived using theT1 andT2 values of
residues that are part of secondary structure elements and
whose values were inside theS2 ) 1 envelope of the Lipari-
Szabo model. The principal axes,Dx, Dy, and Dz, of the
diffusion tensor were determined by global least-squares fits
of theT1/T2 ratios derived from the spectral density functions
of a diffusing particle to the experimental values (25-27).
Three models of increasing complexity were tested: a sphere
[Dx ) Dy ) Dz, D ) (Dx + Dy + Dz)/3], a symmetric top
[D| ) Dz, andD⊥ ) (Dx + Dy)/2], and a fully asymmetric
tensor (Dx * Dy * Dz) (28). The analysis was performed
with programs written in-house. The NH bond length of
backbone amides was assumed to be 1.02 Å, and the
chemical shift anisotropy (CSA) was assumed to be-170
ppm with the CSA tensor taken to be collinear with the
dipolar vector. Model comparisons were performed by using
theF-test and calculation of the probabilityQ to obtain this
F by chance (29). Generally,Q values below 5% were
assumed to justify the use of the more complex model.

Domain Orientation from Residual Dipolar Couplings.
Apparent JNH constants of15N-labeled Lck SH32 were
obtained using the in-phase, antiphase (IPAP) scheme (30).
Two sets of data were collected at temperatures of 25°C
and 20 °C from an aligned gel sample and a sample
containing a liquid crystalline phase (as described above),
respectively. All spectra were processed with resolution
enhancement in both15N and 1H dimensions and linear
prediction in the indirect dimension using Felix 2.3. After
zero filling the digital resolution of the spectra was 0.45 and
7.81 Hz for the15N and1H dimensions, respectively.

The residual dipolar15N-1H coupling (RDC) was calcu-
lated from the apparentJNH constants for spectra collected
for the aligned and isotropic media: RDC) JNH,aligned -
JNH,isotropic. The error in the RDCs was estimated from the
ratios of the line widths and signal-to-noise values in each
spectrum using error propagation. Nonlinear optimization of
the fit of the experimental residual dipolar couplings to
calculated values, as a function of alignment tensor param-
eters, was performed using the program MODULE (31) and
routines written in-house. Only dipolar couplings from
residues in regular secondary structure elements were used
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for analysis. Best fits were determined byø2 minimization,
whereø2 is defined as

σ2 was taken to be the error in the measured RDCs, estimated
to be 2.0 Hz from the ratios of the line width and signal-
to-noise values in each spectrum using error propagation.

Ligand Binding Studies.The binding of Tip(167-199) and
HMTA to Lck SH32 and Fyn SH32 was monitored by
chemical shift perturbations in a series of1H-15N HSQC
experiments upon titration of unlabeled ligand to the15N
labeled SH32 domains. All titrations were performed to an
at least 4-fold excess of ligand. Eight spectra with Tip peptide
concentrations ranging from 0 to 1.72 mM were collected
for experiments on Fyn SH32, and the corresponding protein
concentration was 250µM. Binding constants for Tip and
Fyn SH32 were estimated from chemical shift changes of
individual nuclei at different peptide concentrations by
nonlinear curve fitting (32) according to the equation

where∆ is the chemical shift change,∆0 is the chemical
shift change at saturation,Kd is the binding constant, and
[L] and [P] are the concentrations of peptide ligand and
protein, respectively. This formula assumes a simple [protein]
+ [ligand] a [complex] binding model. An estimate of the
binding constantKd for the entire complex was made as the
average of the measuredKd values for individual nuclei. The
error in Kd was estimated as the standard deviation of the
sampledKd values.

Since intermediate and slow exchange phenomena on the
NMR time scale were observed for several resonances in
the Tip(167-199)-Lck SH32 titration experiment, the
binding constant was determined by fluorescence measure-
ments in an identical fashion as described for Tip(168-187)
and Lck SH3 (33). The W170L point mutation present in
the Tip peptides used for fluorescence measurements was
previously shown to have no effect on the Tip-Lck affinity
(33). Since the concentration of Lck SH32 was always low
compared to the ligand concentration, the experimental data
were fitted to the equationF ) Fmax[L]/( Kd + [L]), where
[L] is the final ligand concentration at each measurement
point, F is the measured protein fluorescence intensity at
the particular peptide concentration, andFmax is the observed
maximal fluorescence intensity of the protein when saturated
with the peptide. Nonlinear regression curve fitting was
carried out to fit the experimental data to the equation, with
Fmax and Kd as fitted parameters. The change in protein
concentration that occurred as a result of peptide addition
was properly corrected.

RESULTS AND DISCUSSION

SH3 and SH2 Domain Communication by Ligand-Binding
to Lck SH32 and Fyn SH32.Two peptides that are specific
for SH3 and SH2 domain binding respectively were used to
investigate the effect on interdomain communication in Lck
SH32 and Fyn SH32.

The herpesviral tyrosine kinase interacting protein (Tip)
contains a proline-rich sequence [Tip(167-199)] that binds
to the SH3 domains of several Src-family kinases (33), and
this interaction was shown to be sufficient for a moderate
activation of Lck (34). Importantly, Fyn is not activated by
Tip (35) even though both Lck and Fyn are expressed in
T-lymphocytes.

HMTA is derived from the middle T-antigen of hamster
polyomavirus. It contains a phosphotyrosine site and is the
strongest Lck SH2 ligand known (Kd ∼ 140 nM (36-38)).
HMTA activates a range of Src-family kinases including both
Lck and Fyn (39-42).

Chemical shift changes induced by titrating a protein
solution with a ligand were used to identify local environ-
mental changes caused by complex formation. With respect
to domain-domain interactions, chemical shift changes in
the domain that is not involved in direct binding of the
respective ligand are of particular interest, because these
indicate possible propagation of structural changes from one
domain to the other. Such changes were indeed found for
the interaction of the SH32 domain pairs of Src (12) and
Fyn (14) with peptides derived from natural ligands. Com-
munication of this kind between domains was suggested to
be important in the activation of Src-kinases (9, 14) and may
be involved in kinase regulation.

Tip(167-199) binding to Lck SH32 and Fyn SH32 was
monitored by changes in1H and15N chemical shifts of the
proteins. The dissociation constant,Kd, for the Tip(167-
199):Lck SH32 complex was determined to be 3.8( 0.2
µM using fluorescence spectroscopy. Both the chemical shift
changes and theKd are similar to the results for the
interaction of an almost identical Tip-peptide with the Lck
SH3 domain alone (33). No chemical shift changes could
be observed in the SH2 domain. Hence, Tip(167-199)
binding to the SH3 domain of Lck SH32 does not appear to
induce structural changes in the SH2 domain of this domain
pair (Figure 1a).

The dissociation constant of the Tip(167-199):Fyn SH32
complex was 64( 18 µM. This affinity is about 15 times
lower than for the Tip(167-199):Lck SH32 complex and
about 2-fold lower than for a focal adhesion kinase derived
SH3 ligand that activates Fyn (14). Only one noticeable
chemical shift change is found in the SH2 domain (residue
Leu163). Thus, generally no structural change seems to be
transmitted through the SH3-SH2 linker upon Tip(167-
199) binding (Figure 1a,b). Since such changes were typically
observed in experiments with ligands that do activate Fyn
(14), communication between domains may be a critical
feature of natural partners of Fyn. This feature is not shared
by Tip(167-199).

The interdomain communication in Lck SH32 was further
investigated by monitoring the chemical shift changes upon
titration of the SH2 specific ligand HMTA. This did not lead
to any chemical shift changes in the SH3 domain, suggesting
the absence of structural communication between domains
even for this very high affinity Lck SH2 ligand (Figure 1c).
In contrast, binding of HMTA to both Src SH32 (12) and
Fyn SH32 (14) did confer chemical shift changes in the
respective SH3 domains. This suggests that Lck differs from
other Src-kinases in that it has no facility for structural
communication through the SH3-SH2 linker, possibly

ø2 ) ∑
i)0

N (RDCexperiment,i - RDCsimulated,i)
2

σ2

∆ ) ∆0

Kd + [L] + [P] - x(Kd + [L] + [P])2 - 4[L][P]

2[P]
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resulting in regulation pathways distinct from other members
of the family.

Domain Orientation of Lck SH32 in Solution.In aqueous
solution, through-space dipolar interactions are averaged to
zero by isotropic tumbling and are no longer observed.
However, it is possible to observe residual dipolar couplings
(RDCs) in a weakly aligned medium (43). A set of such
couplings provides orientational constraints that allow the
determination of a preferred orientation of molecules or
domains in the anisotropic medium. Comparing the alignment
tensors of individual domains in domain pairs provides a
sensitive measure of interdomain orientation (44).

To assess the SH3-SH2 domain orientation of Lck in
solution, we measured its1H15N RDCs (Figure 2) in an
aligned polyacrylamide gel medium (PAG). Alignment
tensors were then determined separately for the SH3 and SH2
domains using the published crystal structure (pdb code 1lck).

A good fit was obtained for the SH3 domain and a reasonable
one for the SH2 domain, showing that the structure of the
isolated domains is similar in solution and in the crystal.R
values calculated according to Clore et al. (45) were 0.23
for the SH3 domain and 0.35 for the SH2 domain. The worse
quality of the fit for the SH2 domain is likely to be caused
by structural differences induced by the presence of a
phoshpotyrosine peptide bound to the SH2 domain in the
crystal structure.

The alignment tensors corresponding to the SH3 and SH2
domains, however, have significantly different orientations
suggesting that the SH3-SH2 domain orientation in solution
is different from that found in the crystal state (Table 1).
We generated model solution structures by performing rigid
body rotations of the SH2 and SH3 domains that achieve
alignment of the individual alignment tensors. Residue E123
in the Lck SH32 linker was chosen as a hinge for these

FIGURE 1: (a) Interaction of Lck SH32 with the Tip(167-199) peptide that binds to the SH3 domain. Residues are colored in red, orange,
and yellow if the magnitude of the changes of the normalized chemical shift upon titration exceeds 0.12, 0.06, or 0.04 ppm, respectively.
Residues for which insignificant changes of the normalized chemical shifts (<0.04 ppm) were detected or for which no shift data could be
obtained are colored in gray and white, respectively. All normalized values of the chemical shifts given were calculated as∆norm ) [(∆HN)2

+ (∆N/10)2)]1/2. (b) Ribbon diagram of the crystal structure of Fyn SH32 showing chemical shift changes on Tip(167-199) binding. Residues
are colored in red, orange, and yellow if the magnitude of the changes of the normalized chemical shift upon titration exceeds 0.20, 0.10,
or 0.04 ppm, respectively. Residues for which insignificant changes of the normalized chemical shifts (<0.04 ppm) were detected or for
which no shift data could be obtained are colored in gray and white, respectively. (c) Interaction of Lck SH32 with the HMTA peptide that
binds to the SH2 domain. Color coding as in panel a.

FIGURE 2: Equivalent sections of overlaid IPAP spectra of Lck SH32 in isotropic buffer solution (left) and in an aligned PAG medium
(right). Some HN couplings are indicated by arrows, and their magnitude is given in hertz.
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rotations because, in heteronuclear NOE, experiments re-
vealed an exceptionally high flexibility (see below). Align-
ment tensors are degenerate with respect to 180° rotations
around their axes, giving rise to four different degenerate
solutions. Two of these models were incompatible with the
connectivity of the molecule or resulted in prohibitive steric
clashes. To identify the correct model of the two remaining
models a second set of RDCs in a different alignment
medium was measured and subjected it to the same analysis.
Comparison of the pairwise RMSDs between all the resulting
models revealed that only two of the resulting orientations
were reasonably close (backbone RMSD 2.6 Å) while the
others were quite different (backbone RMSD> 5.0 Å). The
structure favored from the two alignment media was termed
Lck-RDC. In this model the interdomain orientations differ
considerably from the orientations present in the crystal
structures of either Lck SH32 or Fyn SH32, or indeed in the
inactive state of Src kinases (Figure 3; Table 2).

Thus, the alignment data allowed the determination of the
average relative SH3-SH2 domain orientation in solution,
but it cannot give unambiguous information whether the two
domains are mobile with respect to each other or not. The
axial and rhombic components of the alignment tensor of
the SH3 and SH2 domain are quite similar (Table 1), which
might indicate a rigid domain orientation, but this observation
alone is not sufficient to rule out interdomain dynamics. For
that reason we performed a comprehensive relaxation
analysis which is considered to be more sensitive for
elucidating dynamic behavior of molecules.

Interdomain Dynamics of Lck SH32.NMR relaxation of
nuclei in a protein in solution is mediated by rotational
diffusion. Analysis of transversal (T1) and longitudinal (T2)
relaxation times allows determination of characteristic tum-
bling times of the domains in the protein. Furthermore, the
diffusion tensors to the corresponding molecules or domains
can be determined reflecting the shape of the molecule. In
addition, the heteronuclear{1H}15N NOE is a relaxation
parameter that is particularly sensitive to local motion on a
subnanosecond time scale. The lower the value for the
heteronuclear{1H}15N NOE, the greater the local flexibility
of the protein.

We measured the{1H}15N heteronuclear NOE for Lck
SH32 to determine sites of enhanced local flexibility (Figure
4). The SH3-SH2 linker region turned out to be extremely
flexible. Residue E123 has a negative NOE value indicative
of a high degree of mobility. This flexible hinge region was
retained in Tip-bound Lck SH32 (data not shown). Hetero-
nuclear NOE data gathered for Fyn SH32 (11) also indicate

Table 1: Alignment Tensors of the SH3 and SH2 Domains of Lck
SH32a

domain Aa [10-5]b Ar [10-5]b R [deg]c â [deg]c γ [deg]c øtotal
2

SH3 3.7( 0.4 1.5( 0.5 112( 14 59( 5 157( 5 6.19
SH2 3.8( 0.5 1.4( 0.4 149( 9 108( 3 141( 5 21.35

a For the fit on the Lck SH32 crystal structure 19 RDCs were included
in the fit for the SH3 domain and 27 for the SH2 domain. Since the axes
of the Lck SH3 and SH2 alignment tensors are not collinear, domain
reorientation is necessary to obtain alignment and therefore no fit was
performed for the SH32 domain pair of the crystal structure.b Aa and Ar
are the axial and rhombic components of the alignment tensor.c R, â, and
γ are Euler angles for the rotation of the alignment tensor into the molecular
frame.

FIGURE 3: Comparison of structure of Lck-RDC (green), that is
favored from combination of the data from two oriented media,
with the crystal structures of Lck SH32 (magenta), Fyn SH32 (blue),
and the Hck SH32 (yellow) domain pair as part of the inactive
kinase. All structures are overlaid on their SH2 domain.

Table 2: Summary of the Relative Domain Orientations

structure tilt anglea [deg] twist anglea [deg]

Hck SH32b 13 306
Fyn SH32 38 334
Lck SH32 crystal structure 117 345
Lck SH32 RDC structure 94 302

a Tilt and twist angles for the rotation relating inertia tensors corre-
sponding to fragments 106-109 and 171-176 in Hck and homologous
fragments in Fyn and Lck.b As part of the Hck crystal structure of the
inactive kinase.

FIGURE 4: The backbone15N{1H}-NOE of unbound Lck SH32 at
a 15N Larmor frequency of 50 MHz. Secondary structure elements
are indicated by black bars. The negative value measured for E123
which is located in the SH3-SH2 linker region indicates increased
backbone flexibility at this sequence position.

Lck SH3-SH2 Domain Orientation Biochemistry, Vol. 44, No. 39, 200513047



a fairly flexible SH3-SH2 linker, but no negative{1H}15N
NOEs were found.

15N T1 andT2 relaxation time constants were determined
for Lck SH32 and compared with calculated relaxation times
as a function of isotropic correlation time and order parameter
(S2) using the Lipari and Szabo model (24). For a 0.44 mM
sample of free Lck SH32 most residues were found to lie
within calculated limits at 25°C indicating the absence of
aggregation (Figure 5a).

The diffusion tensors of the Lck SH32 domain pair and
the individual SH3 and SH2 domains were determined using
the Lck-RDC model as structural input (Table 3). The same
calculations were also performed using the Lck SH32 crystal
structure as input, but the fits were generally worse compared
to the Lck-RDC structure (data not shown).

Treating Lck SH32 as one unit, the tumbling of the protein
is best characterized by a prolate diffusion tensor with a
tumbling time of 8.0( 0.02 ns and an axial ratio of 1.32(
0.05. However, there are still a few residues whoseT1/T2

ratio does not agree with this interpretation (Figure 5b). The
reason for this can be understood by comparing the tumbling
times and orientations of the diffusion tensors that are
obtained for the individual domains in the Lck SH32 pair.
The SH3 domain is best described by a prolate diffusion
tensor with a correlation time of 7.6 ns and an orientation
of -17 and-1° while the SH2 domain is best described by
an asymmetric diffusion tenor with axial ratios of 1.47 and
1.24 and orientations of 21°, 21°, and 3° with respect to the
same molecular frame (Table 3). These differences in
correlation times and diffusion tensor orientations suggest
that the domains should be treated independently. Conse-
quently, the statistical significance of the improvement in
the interpretation of the data when treating the domains
independently was assessed (Table 4). According to this
analysis the overall best description of the rotational diffusion
of Lck SH32 treats the SH3 domains and SH2 as independent
with a prolate diffusion tensor for the SH3 and an asymmetric
tensor for SH2 domain. This indicates that tumbling of the
SH3 and SH2 domains is partially decoupled and that there
is a considerable degree of interdomain flexibility. This is
consistent with the difference in correlation times of the
individual domains (τc ) 7.64 ( 0.06 ns for the SH3 and
8.03( 0.02 ns for the SH2 domain) and the comparatively
small axial ratios (about 1.4 of the diffusion tensors) (Table
3). This is also consistent with the difference of the averages
1H-15N-NOE of the SH3 and SH2 domains (Figure 4). The
presence of significant interdomain motion in Lck SH32
means that in solution this domain pair is best described as
an ensemble of many possible domain orientations. The data
obtained from two orienting media, however, is not sufficient
to allow quantitative statements on the relative population
of different conformations within this ensemble. A qualitative
analysis shows that the solution state domain orientation is
roughly intermediate between that of the crystal structure of
Lck SH32 and that present in the inactive state of Src kinases
(Figure 3). Compared to the conformations present in the
crystal structures, the SH3-SH2 domain interface in Lck-
RDC is approximately 3-4 times smaller, suggesting a
decrease in stabilizing interactions. This favors a model in
which the more stable conformations observed in crystal
structures are also populated for Lck SH32 in solution and
a conformational switching takes place between them. This
suggests that the interdomain orientation as determined by
RDC measurements (Figure 3) should rather be considered
as a type of average orientation.

Biological Implications.In light of similarities and dif-
ferences in structure and function of Lck and Fyn it is
interesting to compare the present work to previous results
of similar experiments performed on Fyn SH32 bound to
high affinity ligands (14). Measurements on Fyn SH32 bound
to either SH2 or SH3 binding ligands indicate that structural
changes can be transmitted through the linker and correlate
with kinase activation (9, 14).

In comparison Lck SH32 behaves quite differently. Lck
SH32 exhibits a considerably larger interdomain flexibility
compared to Fyn SH32 (14). Moreover, in Lck SH32 neither
the high affinity SH2-binding ligand HMTA nor the medium

FIGURE 5: (a) 15N T1 and T2 relaxation times of backbone
resonances of Lck SH32 at15N Larmor frequency 76 MHz. The
continuous lines define the boundaries for order parametersS2 of
the isotropic Lipari-Szabo model. As the maximum value forS2

is 1.0, values that are outside the black boundary cannot be
accounted for in terms of the simple Lipari-Szabo model and were
excluded from diffusion tensor analysis. (b) Prolate diffusion tensor
fit for Lck SH32. SH3 residues are shown in blue and SH2 ones in
green.T2/T1 is plotted over sin2(θ), whereθ is the angle of the
15N1H bond vector fitted for each residue with respect to the
principal axis of the diffusion tensor. The straight lines were
obtained by linear regression, and the slope is a linear function of
the axial ratio of the diffusion tensor.
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affinity SH3-binding ligand Tip(167-199) induced any
chemical shifts in the adjacent domain despite being able to
activate Lck (34, 42).

The greater flexibility of the linker region in Lck SH32
as compared to Fyn SH32 (14), and the absence of interdo-
main coupling, can be rationalized by the different composi-
tion of its linker. Lck has a proline-X-proline motif in the
SH2-SH3 linker region, while Src, Hck, and Fyn contain a
glutamate in the linker that can form electrostatic interactions
with a lysine of the SH3 domain (11), thus stabilizing a linker
conformation that is compatible with a domain orientation
close to that found in the inactive state of Src kinases.

Considered on its own, the relative flexibility of the Lck
SH32 domain pair would also be expected to shift the
equilibrium between the active and inactive state of Lck in
favor of the active state. This is of course only one of many
factors contributing to the finely tuned control of this
allosteric switch.

Fyn and Lck are both expressed in T-lymphocytes and
share a pairwise sequence identity of 54%. While Lck
expression is essentially confined to this type of cell, Fyn is
expressed in a broader range of cells, taking part in diverse

signaling pathways. Both have been implicated in T-cell
activation and differentiation, and it has been suggested that
Fyn can act as a backup for Lck to some extent (3).
Nonetheless, some functions have been identified that are
unique to Lck. Examples are the positive selection of CD4
single-positive cells and the proliferation of T-cells in
lymphopenic environments (46). The significant differences
in SH2-SH3 linkage observed here may help to adapt Lck
and Fyn to their specific surroundings and to achieve their
functional differences.
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